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Abstract

Two distinct but related results are obtained. First, an
iterative method is derived for obtaining the solution of optimal
control problems for Markov chains. The method usually converges
much faster, and requires less computer storage space, than the
methods of Howard or Eaton and Zadeh. Second, non-linear finite
difference equations which 'approximate' the non-linear degenerate
elliptic equation (*) arising out of the stochastic optimization

problem (for diffusion processes) are found. The difference equations,

and their solution, may have a meaning for the control problem even
when the elliptic equation for the cost is degenerate. The iterative
methods (version of the Jacobi and Gauss-Seidel) for the iterative
solution of these non-linear systems are discussed and compared.

Both converge to the solution (provided that the difference equations
were derived using the method introduced in the paper), one (new to
this paper) often much faster than the other (Theorem 2). In fact,
the typical time required for the numerical solution is about the
time required for a related linear problem, The method of obtaining
the difference equations, and the proof of convergence of the

associated iterative procedures, is illustrated by a detailed example.

For a wide variety of non-linear degenerate elliptic boundary value
problems, the method yields a suitable set of non-linear finite
difference equations and implies that the associated iterative pro-
cedures converge.




METHODS FOR THE NUMERICAL SOLUTION OF DEGENERATE LINEAR
AND NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Harold J. Kushner

The paper is concerned with the formation of and iterative solu-
tion to,finite difference equations for non-linear degenerate boundary
value problems which, loosely speaking, have the form (*) in a domain

D, where boundary values V(x) = B(x) on & (the boundary of D) are

assigned.
z a, .(X)BZV(X) + min (2 f.(x,u)gvx_gﬂ + k(x,u)} = 0
5,3 0 %S w1t i (*)
%y ) v (x )
;?jaij(x) i(Xj + mﬁx {% fi(x,u)agz_l + k(x,u)] =0

u is a vector parameter which varies in a compact set U, and
{aij(x)} is non-negative definite matrix which may poésibly not be
of full rank.

If the matrix {aij(x)} is not of full rank, there are questions
concerning the existence, uniqueness and smoothness of solutions to
(¥*). 1In particular, even if there is a solution, it may possibly be
insensitive to the values of B(x) on some part of . Nevertheless,
under the mild conditions imposed, the set of difference equations
which we obtain do have a unique solution and, moreover, can be given
a physical interpretation as a solution to a physical problem which is
closely related to a physical problem from which the equation (*) may
arise (see Part I).

In Part II of this paper, we describe a technique for choosing




a difference scheme, and prove that the (Jacobit) iterative procedure
for the set of non-linear difference equations converges to a unique
solution, regardless of the initial guess. 1In Section IV, we prove
that, under certain conditions the corresponding Gauss Seidel
iterative method for the non-linear difference system converges faster

than the Jacobi method, exactly as for the linear case [1].

The method of Section II draws upon a similarity of form be-
tween certain difference approximations to (*) and certain equations
obtained in the optimal control of Markov chains. Once the similarity
is clear, we need only refer to the relevant control theory litera-
ture for the proofs of convergence (for the Jacobi method). Although
relevant results from control theory [2], [3] have been available for
several years, it appears that even workers concerned with the con-
trol of continuous time Markov processes (which often yield equations
of the type (¥)) do not seem to have made use of them in studying the
convergence properties of numerical schemes for (¥). In Part I, the
relevant Markov chain results are stated. 1In Part III, we give a very
simple development (using only simple properties of Markov chains) of
the usual results on the Jacobi and Gauss-Seidel [1] matrix iterative
techniques.. Aside from providing a simple alternative derivation, the
point of view is useful in that it assigns an interesting intuitive

interpretation to the methods,'and provides some insight into the

+ . .
The terminology is that of Varga [1]. The exact schemes are de-

scribed in Sections I and II.



problem of ordering the grid points (for the Gauss-Seidel procedure)
in order to achieve a more rapid convergence. Numerical results in-
dicate that, generally speaking, the iterative procedures for the non-
linear problems converge about as fast as the corresponding iterative
procedures for the linear problems obtained by fixing the u in (%)

to be some function of x with values in U.



I. Results From Stochastic Control Theoryﬁ

The techniques of the sequel involve simple calculations with the

transition probabilities of Markov chains. Let X be a sequence

S S

of random variables which take values in the state space S = (0,1,...,N).

Each element of 8 1s called a state. If Xn = i, we say that the

process (X } is in state i at time n. Let P(Xn+m € PIXO =1 ,..45%

i} denote the probability that X m is in T(in 8) given that X

io,. .,Xn = in' The process [Xm] is called a Markov process (see [4]
. . ' . o -
for more details) if the 'Markov property P[Xn+m € PIXO = lo""’Xn
i} =P(X  _ el|X =1} holds for all I'CS, m>0 and i ,...,i
n n+m n n o n

in 8. Define the transition probabilities pij = P{Xn+l = Jan = i},
where pij does not depend on n. Define the m-step transition
probability p?j = P(X

(see [4])

— J|Xn = i). The Markov property implies that

for any nz O, m 2 0. Let state O be an 'absorbing' state in that

P = 1 (once in state zero, the process never leaves it). Suppose

that there 1s some o > 0 so thatﬁ pgo z ¢ for all 1i. Then pgo

+The paper has been written with the hope that the ideas would be ,
accessible to workers in numerical analysis who are not particularly
well versed in stochastic control theory. A modified version, con-
taining numerical results and some discussion of the control origin

of the boundary value problem (*) has been written and will eventually
appear in an appropriate engineering journal.

M imis condition is clearly satisfied if, and only if, for each i there
i hain of stat Loy eaeyl . P. .
is a chain of states 1i,, »1, SO that Py Py 5 ...P5 1P >0

17172 r-1'r r




>
is nondecrea,singJr in n and
mN m
Py, Z 1-(1-a) . (2)

Suppose that there is a real valued function K(-) on 8, called the

tcost!' and K(0)

0. Let EiY denote the *conditional! expectation

[
.

of Y, given X_ ; ie., B,Y = E[YIX0 = 1]. Then, the average

cost, defined by

o]
c(i) = E, 2 K(Xn)
n=0
is finite'? by (2) and satisfies''t [2], [3],

N
c(i) = 2 pijC(j) + K(1) = B,C(X;) + K(i) (3)
1

1.

p?o is nondecreasing since state O 1is absorbing and p?én 2

n m n
= .
PioPoo = Pio

m = r., Then, by the Markov property, p

(2) is true for m = 1. Suppose it is true for

(r+1)N rN_N N mw
; io = PioPoo " ;flpi,jpjo =
1-(1-a)f + o T pl.‘lfr z 1-(1-a)" + a(l-a)" = 1- (l—a)r+l.
=1

o]

Miet X = max K(i). Then C(i) =K X P(xn;é 0). But, by (2), the
i n=0

sum is finite.

[>+]
ﬁUrc(i) = K(1i) + E; ZlK(Xn). But the latter sum equals E,C(X;) which,
Nn=

N
in turn equals X Pijc(j)-
J=1




To each state i =1,...,N we now associate a parameter u; taking

values in a compact set U. Let the pij(ui) and K(i,ui) be con-

tinuous in the u,. ILet K(O,u) =0 and P, u) = 1. u, is called

o

a control, and T = (ul,...,uN) a control policy [2], [3]. To each

fixed 7 (which fixes the {pij(ui)}). There is a corresponding cost
which we denote as {dw(i)}. The object of stochastic control theory
(for discrete Markov chains) is the selection of the 7 (or, equiv-
alently, the transition probabilities {pij(ui), u; € U}) which
minimizes' the cost (u(X)) is written in lieu of w, )

n

(1) = ETlr S K(X_,u(X)). (%)

o

n
Further, let P 5 (vo,...,vn_l) = P(X

I

jIXO =i, and m_ used at

time k,k = O,...,n-1}. Suppose that

[\

N
i®(wb""’WN-l) a> 0.

This condition holds if to each 1 there is some chain of states

il""’ir so that
inf p,. (w.)p. . (u, )...D. . {u, p, ~(u. ) >o0.
(u,) e I B~ Bl | tpaty tpop 100

fThe minimization could be replaced by a maximization, as noted in the
remark following Theorem 2, For definiteness, except in Example 2, a
minimization is used.




Write p?j(ﬂ}...,w) as p?j(ﬂ). Under our assumptions, the optimum
t . .
control exists and the corresponding minimum cost C(i) = inf Cw(l)

-
satisfies (see [2], [3] and Section IV);

N
(i) = min (X2 P; ; (u)c(3) + K(i,u)). (5)
uieU 1

Furthermore, for any initial Co(i), the sequence Cn(i) defined by

N
¢ (1) = min { 2 p..(uw)C (i) + K(i,u,)}. (6)
n+l u.eU 1 1% i
1
converges [3] to C(i). This is the crucial fact for Part II. Some
insight into the reasonably simple derivation will be given in Parts
III and IV. In Part IV, we extend the convergence theorem to the
Gauss-Seidel form
~ i-1 ~ N ~
Chya(1) = min (¥ p,,(u;)C (@) + 2 py5(u)C (3) + K(3,uy)),  (7)
uieU J=1 J=1
and give conditions under which (7) is strictly better than (6).
(7) always converges if (6) does, and to the same unique solution. Further-

more, (7) has only about half the memory requirements of (6).

A Remark on the Physical Interpretation of (*) and (5).

Suppose that a random diffusion process is governed by the (Itg)

vector stochastic differential equation [5]

o s . . .
Existence is essentially proved in the reference [5] and is proved in
Section IV. As noted there, the proof can easily be changed to
correspond to the 'maximization' problem.




ax = £(x,u)dt + v(x)dz, 8 (x) - %E T ()Y ().

u = u(x) 1is a 'control', taking values in U. Define the cost,

corresponding to a control wu,

T
c’(x) = EB(X.) + E_ [ k(x_,u(x)))ds,

where Ex is the expectation conditioned in the event that the
initial condition is x € D, and T 1is the first arrival time on

d. Purely formally, define

V(x) = inf c%(x),

Then V(x) formally satisfies (*). Under certain conditions, there
is an optimal u = uo, and Cuo(x) = V(x) which, in turn, satisfies
(*). See [6], [T]. In Examples 1 and 2, we show how to determine
difference approximations to (*) which correspond to a form such as
(5). In such a case, whether or not the original optimal control
problem is meaningful, it turns out that the solution to (5) (which

exists and is unique) is the solution to an optimization problem for

a Markov chain closely related to the process Xt'



1.

II. A Method for the Numerical Solution of Elliptic Nonlinear

Boundary Value Problems.

Two simple examples will suffice to illustrate the method.

Example 1. Let h > 0 be the step size and e, the unit
vector in the ith coordinate direction. For notational con-
venience, it is supposed that the step size is the same in each
direction. The method is clearly valid if the step sizes are

different; of course, the conditions (9) would then be differ-

ent. Let

3% 3 R W

v
a.. —= + 2a + a + T -] | + k(x) =0 (8)
11 axf 12 &1&2 22 _éaxz 321 &2

or, equivalently,

v N -
2 a.. + fgo+ minug—+ k(x) = 0 (8")
g gyt Tk [u|s1 %2
; : = {x'-A = < -
be defined in the rectangle R = {x: A s x) S A, A s x, < AL,
nh = 2Al, nh = 2A2. Then there are (nl-l)(ng-l) points of the
grid internal to R and (nl+l)(n2+l) = N total grid points. The
aij and f are functions of x and we only suppose that*
a1 z 0, a5 =N0]
By, > 2oy, + h/2 (9)
V(x) = B(x) on R.

If a,, <0, the difference scheme (10) for 82V/axlax2 must be changed,
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First, a difference scheme for
5 aija%z/axiaxj + £/ + ud/Ay + K(x) = O (8")

will be given, where u 1is some function of x satisfying |u| s 1.
Then the difference equations will be identified with a particular
optimal stochastic control problem,and convergence of the correspond-
ing iterative procedures (6) or (7) shown - for any initial guess.
Finally, the limit of the sequence of iterations will be the unique
solution of a non-linear difference scheme for (8). The reason for
our particular choice of difference approximations will be seen in the

sequel. At each grid point internal to R, let
2 2
aaw/axl.a [V(x+elh)+V(x-elh)-2V(x)]/h

3%/, 3k , - [V(xre ven) ~V(xre h) -V(x)+V(x-e n) /6> (10)

2 2
BEW/ax2'4 [V(x+e2h)+V(x-e2h)-2V(x)]/h .

av/ax2 - [V(x+e2h)-V(x-e2h)]/2h (11)
av/axl - [V(x+elh)—V(x)]/h if f(x)z o (12a)
av/axl - [V(x)-V(x-elh)]/h if f(x) < oO. (12b)

Then, using the symbol V(x) for the solution of the difference

equations also, the substitution of (10)-(12) into (8") gives

(@]
I

all[V(x+elh)+V(x-elh)-2V(x)]+2al2[V(x+e2h+elh)
-V(x+e2h)-V(x)+V(x-elh)]

8, [ V(x+e,h)+V (x-e h) -2V(x) J+k(x)b° (13)

-+

( V(x+e h)-V(x)
nf V) -Veeym) | ¢ BV (xre h) -V(x-e,h)]

+
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where the upper entry is used if f 2z O and vice versa. Collecting
terms and dividing by the coefficient of V(x) yields, for x in-

ternal to R

V(x+eh) \a, + b £} V(x-e;h) | a;; + 22,
V(X) = Q o+ Q,
(811 8y, + 28, * h| £

V(x+e2h) V(x-egh)

+ ——75—-——[a22-2a12+hu/2] + ———67———[a22-hu/2] (14)

2a 2
12 . k(x)h
+ V@Hegﬁefﬂ Tt g
where

Q = gall + 2a22 + 2a12 + h|f|.
Now we relate (14) to a control problem. The coefficients of
the V(-) on the right of (14) have the character of probabilities;
they are norn-negative and sum to unity. Now, order the N grid
points on R, and associate a state of a Markov process with each
point. We use both notations X and '1' to refer to the grid
points. If x 1is internal to R, define K(x,u) by hgk(x)/Q(x).

If x € R, define K(x,u) by B(x). Define an absorbing state O

and define p,,=1 for any x on AR, and any control wu(x). For
x internmal to R, the pxy(u) are given by the coefficients of
V(y) on the right of (14). For each x internal to R, only

h(u) and D (u) depend on the control parameter u,

2
and u e U= [-1,1]. A control policy T = (ul,...,uN) for this

p x-e h
X,X+e X,X- 5
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problem is merely an association of some number in [-1,1] with
each state on R.
For the moment suppose that the transition probabilities

satisfy

??rf} pgo(vo,. .+sTy_1) 2 > 0. (15)
J

Then by the results in Part I, the T minimizing the C(x) =

00
EX K(X ,u(X )) exists and satisfies
e}

_ \ Clxre h) | a, + hlf] C(x-e h) \ &,  + 28,
C(X) = min ———r— + Q—
Juls1| o | ap, + 28, + 1|t
C(x+e2h) C(x-egh)
+ ———— a2 ythu /2] + —q— ey /2] + (16)
2

12 k(x)n®

+ C(x+e2h+elh) 3 3

for x internal to R. Since p__=1 and K(x,U(x)) = B(x) for

X0
X on OR,we assign

c(x) = B(x) = K(x,U(x)),

for x on OR.
Furthermore, replacing C(-) on the left and right of (16)by

Cn+l(-) and Cn(-), resp, the resulting iterative process converges to the
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unique solution of (16) for any CO(-). Performing the minimizatian
in (16) yields wu(x) = —sign[C(x+e2h) - C(x—eeh)]. It is clear that,
if u(x) = -sign[(V(x+e2h) - V(x-eeh)] is substituted into (13),
then the C(x) of (16) satisfy (13). There can be no other V(x)
satisfying (13), by virtue of the uniqueness of C(x). Now, writing
the last term in (13) as -h|V(x+e2h)-V(x-e2h)|/2, we note that
(13) is a difference equation for (8). Since ¢(x) also satisfies
the boundary conditions, the demonstration of convergence is com-
plete, except for (15).

Property (15) is proved as follows. Fix x and let x + ejnh

2

be on the boundary R. Denote the state x + egih by i, 1z 1. Since

P (u) = (a22-2a12-h/2)/Q z v>0, and P ~ 1 for y on R,

x,xtegh

we have

v

B (T oseveyTyp) 2 min B (0P, ,(a(1) e opy y  (a(a-1)), (a(n)
(17)
N

n N
[a,5m28, 50/2] 2 [ags-28,70/2]7 = ¥ = o

1w

The difference schemes (10), (11), (12) are selected to assure

that the coefficients in (14) would be non-negative and sum to at

most unity, Other choices are certainly possible, but 1t must be noted

that the difference equations corresponding to any arbitrary difference

scheme may not correspond to a control problem and, consequently, the

above proéf of convergence may not be valid. Finally, if k(x) 2 ¢ > 0
in D, Theorem 2 implies that the Gauss-Seidel procedure is strictly
preferable to the Jacobi procedure - at least if ‘Co(i) = 0, Experi-
mentally, it has been found to be generally preferable.

Example 2. We would like to consider the 2-dimensional problem

(18), in the domain R of Example 1



jn

2
7 aijgzi&j . fg{f’l o (/2 )2/ + k(x) = 0 (18)

or, equivalently,
Rl ¥ 2 '
Zaijbzv/axiaxj+fa(—l+m3x [u&g-u]+k=0. (18')

In order to prove convergence, we will need a bound on the (JV/ ax2)2

term. Hence, we will actually obtain a numerical scheme for

% v ¥ 2
% a., + fx—+ max [u<s -u]+k=o0. (19)
W T O e X |

Bounding by ¢ linearizes the (32V/a>c§)/h term for large values:

and the maximized term in (18') equals

(v ja)/h ir |dv/a| = 2

c| av/ x| <? if | av/ Qe | > 2c

The difference schemes (10)-(12) will be used. Then for any fixed u = u(x),

a, + h|f]
v(x)a(x) = V(x+elh) (20)
&1
a + 2a
+ V(x-e;h) 1 12 + V(x+e2h)[a22-2a.l2+hu/2]
: a1q + 28, + hi £

2 2
+ V(x-eeh)[aze-hu/E] + V(x+e2h+elh)2a12 - un? + x® = o,



5
Let

> he/2 + 2a

200 100 893 2 0.

Then the coefficients on the right of (20) are non-negative and sum
to Q(x). Using the same identifications with quantities in the

control problem gs was done in Example 1, it can easily be verifiea
that (15) holds here also. The optimal control problem correspond-

ing to (20) is represented by (21):

V(xtejh) \a); + h| £] V(x-eh) \aj; + 2a,, (
V(X) = —-—-—Q——— + __Q_.
8y, aj; + 2a;, + h f[\
V(x+e h) V(x-egh)
2
+ —g [a22-2a12] + —g 5o (21)
1)n h 2,2 210
+ IISTJ;C a 5u-V(x+e2h) - §u-V(x-egh)-u g + V(x+e2h+elh) 3
kh2
+ -Q-—- 3

where the maximized term equals the smallest of

[V(x+e2h) -V(x-ezh)]2/16

chl | V(x+e h)-V(x-e h) | /2-ch].

Upon substituting this term in (21) we get a difference scheme for
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(18'). Replacing V in the left and right of (21) by V., o8nd V,
resp., gives an iterative procedure which converges to the unique
solution of (2L) for any V_. The details are exactly as in Example

l.



L7

I17T. é Simple Probabilistic Derivation g£ Some Results EE Matrix

Iterative Analysis.

Much of matrix iterative analysis is devoted to the sysé
tem AY = b, where A is diagonally dominant and strictly diagonally
dominant for some row., Let A = -D + F, where D 1is the diagonal

part of A and the elements of D and F are non-negative. Such

systems commonly arise in the numerical solution of boundary value

problems. Let A be N X N and write i {pij} and

s {K(i)}. Two well known iterative techniques for the

numerical solution of Ax = b are the Jacobi

D']TYn -0 h

n+1

or, equivalently,

|
1 ™M=

Y l(i) =

- P T,(3) + K(2) (22)

j=1

and the Gauss-Seidel, which can be written as

N i-1 N '
le(i) = '21 p..Y l(j) + 2 p..Y (3) + K(1), (23)
J:

ij ot j=1i ij™n
and their relative merits are well known [1]. Here we offer a
probabilistic proof of their relative properties which, aside from

its simplicity, provides some insight into the preferred ordering
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of the rows of A and the choice of a difference scheme, and also
leads to a proof that (7) is at least as good as (6) for the non-linear
problemn,

The pij have the character of transition probabilities.

They are non-negative and Z p £ 1. As before, let X ,Xl,...
j=1

be a Markov chain with state space 8 = (0,1,...,N) and transition
N

probabilities Py Define pn,=1, P;o=1 - j?lpij and k(0) =

0. Let y = (yy,...,¥;) &nd define the norm vl = max |y.|.

By successive substitutions, (23) can be written as

N
Y (1) = Za Y (3) + E(4) (24)
J-—-
where the 9 5 and i(i) (obtained by substituting the §h+l(j)’

j < i, of (24) into (23), reordering and equating coefficients with
(24 )) are

i-1
T jz i
Qs = Py = Piylky 9
i-1
= 2 plquJ j<i (25)
= pij i=1
K(1) = T p, K(3) + K(1)
=1

The {qij} also have the character of transition probabilities for
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some Markov chain X ,...,X ,... on the state space § = (0,1,...,N).
N
i o= 1 = ‘s = 1.
Define q, % 9y and a,,
Now, let TY = (TlY""’TﬁY) be a map of R' into RV
. . .th X .
Euclidean N-space) with i component T.Y = P..Y + K(i).
1 J“l 1J J
Then
N
|Tv-12 = max | £ p.,(¥.-2.)|
PP 5 R B
and, by iterating,
N oa
|TY-T"2|| = max | ¥ po.(Y.-2.)]
PO R R B

(where p?j is, again the n step transition probability

P{X,, , = jIXk = i}, and is the i,jth element of the matrix P-).
N on
Thus, if max .leij -0 as n -, (22) (or, equivalently,
i J=

PY + K = TY) represents a contraction mapping with a unique fixed
p;int.. Similarly, let QY = (QlY,...,QNY) with Q.Y =

2 q..Y, + K{(i}. Then

j=1 iJd

N
n, ~n n
i §=1 J
and it is clear that the relative rates of convergence,to the fixed
point, of the Yﬁ and ?n whose components are given by (22) and (23)

N
depend on the relative rates of convergence to zero of 2. p?. and
J=1
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N
)y q?j, resp., as n — o, Theorem 1 (see (28) in particular) is
J=1

the probabilistic proof that (23) is preferable to (22),

Theorem 1. Suppose that the rows can be and are ordered

so that

max [pil""’ggi-l} >0 (1> 1) (26)

P; 5 >0 for some j(i) > 1.

Then (22) and (23) converge to the same unique solution of

N
¢(3) = ¥ p,.Cl3) + K(1). (27)
. J
J=1
In addition

N n N n

L., < Z Dsay (28)

=1 =1 M

if either n>1 or i>1, I£ n=1 and i=1 hold simul-

taneously, then there is strict equality in (28). TFor the Markov

chain introduced in this section, we have

(i) = E; § K(X) < (29)

m-1
If Yo(i) =0 in (22), then Ym(i) = E, %‘K(Xn),



Remark. A weakening of (26) is possible, but (26) allows for a
proof in an unburdened notation. The condition (26) means simply that

N

> a a,. >0 for
1]

(referring to the original form AY = b) 15
2

%11
some Jj<i and aij >0 for some j > 1. These conditions are
usually satisfied by the matrix problems arising from boundary value

problems.

Remark. Since the effective norms of the contraction operators

N
Tn or Qn are the probabilities of not being absorbed ( Z‘P?j =
1
n N n n
l-p, or 2gq.,=1-gq..), if there is a choice of difference
io 1 i 107?

schemes, it is preferable to choose one with the higher absorbtion

probabilities for tMe range of n ©of interest. 1In fact, the absorbtion
probabilities can often be estimated by merely observing the directed

graph corresponding to the process transition probabilities. The

probabilities of moving toward the bouﬁdary R should be maximized
by the choice of the difference scheme. Furthermore, the q?o depend
on the ordering of the states, and the graph may yield some useful
information concerning preferable orderings.
We note also that the method is applicable if the boundary
conditions are of the form d(x)/n + BV(x) = B(x) where n is
an outward normal and P % O. Then, the process, on reaching the
boundary, has some probability of being absorbed at state O at the next step
(proportional to B) and some probability of being reflected back in-
to the interior of R, The analysis is quite similar to that given

here,

Proof. (29) and the line below it are obvious and we will only

prove (28). (25) and (26) imply that

P2 s on on sm sn 50 50 Be SN M S0 B ES AN NS BN WS &e
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g g (30)
.= . < L. 50
: j=1q13

Let i=m=2 in (25). Then, for this value of m, and using

(see (26)) the fact that Py > 0, and (30), we obtain

7 7 3y
Q.= LDp.+ D
je1 ™ gom ™ 51 kel mk]
m-1
= ZpJ+k§lp (Zq :) (31)
J""m
m-1 N

< Zp.+ LP,<Zp
jom B e RE g

N
(The latter term on the second line of (31) is merely Ppy 2P

J=1
Now, supposing that (28) is true for n =1 and 1= m-1 we show

LJ")
that it is true for n =1 and i =m. The first two lines of (31) are
an identity for any m. The thir@ line holds also since, by the in-

N
duction hypothesis and (26), 2 Y <1 for k= 1,...,m-1, and

< nm-
pmk>0 for some k £ m-1,

Thus, by induction, (28) is true for n = 1. We now prove it
for n > 1. Since the qij are transition probabilities for a

Markov chain, we ha.ve1L

-r
(32) uses only (25) and the Markov property q =

2 qlkq [4]. In (32), the summation need be over j e [1,N] only

since J 74 0 and qgj = 0 by the previous definition dop = 1.



1
i
1
i
i
1
1
i
1
1
i
i
i
i
i
1
i
1
A

2
N N N N N
+1 r r
F(i,r+l) = L. = % L aq, = 2a,(2q.). (32)
’ =1 W g1 g F Dtk =1
g r+l1 y x g r 5 (
9. = 2 2Xq.,q,., S Q- 33)
j=1 8 kel ge1 Lo k-1 °F

Substituting (25) for the left hand Loy in the far right term of

(32) gives
Zl T
F(1r+l)—Zp (Zq)+ Z( pq)Zq (34)
kei kJ k=1 s sk i kj°
-1 r+1
The last term on the right side of (3L4) is Z 1 Z ey Then
s=1 j=1

using the bound (33) in (34) and rearranging (34) gives

N N
. r
F(i,r+1) s 2oy (2 % s) (35)
el &1
N
Let r = 1. Then since Z q, .S 2 p_. with a strict inequality
jel M g

for k >1, and p;, >0 for some k>1 (by hypothesis) we have

N N
F(i,2) < Z p. Zp.:Zp
k-1 K50 B 50
Then (28) is valid for n = 2. Suppose it is valid for n = r.

Then by the hypothesis that Py >0 for some kK z 1 and the in-
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duction hypothesis, (35) is bounded by

) N N r N r+l1
F(i,r+l) < 2 P ( z ij) = 2 Pis
k1l T° =1 j=1 1Y

and the theorem is proved.



Aulniaininiaikekba e

IV. The Gauss-Seidel Method fEE the Non-Linear Problem.

n n ~ ~n ~n
Let T = (ul,...,uN), and T o= (Uy,... 0
determined by the minimizing operations in (6), and (7), resp., at

th | . n . .n
the n iteration. Let P(wh) = {pij(ui)}’ and K(Wh) = {K(l,ui)].

) be the policies

Then C ., = P(Wﬁ)cn + K(Fn). Similarly, once the T _ is determined
(m) =

(i,%h) are

by (7), we may write Coq = Q(Wh)Cn + K(Wh)? where

N o B

la;5(m)Y, X(m ) = (K(1,7 )}, and the q, (m) eand
determined by (25) in terms of the {pij(a?)] and {K(i,ﬁ?)}.
Let ' = (ui,...,uﬁ) be an arbitrary policy. Define I, as

the set of states 1, 1 =i < N, which satisfies the condition: for

each ' and 1 in I there is a chain of states 1> i, >

0’ 1
ipeee>i 21 (depending on 7' and i) for which K(ir,uir) >0 and
, . .
Py (w) -Pi i (ui ) > 0. Thus I, contains those states which
1Yl r-lr r-1

can reach (for any control) some lower state, via a 'decreasing' chain,
where the lower state has a positive cost for the chosen control,

(Both the chain and the lower state may depend on the control.) Define
the set of states I,nz 1, as those satisfying the condition: 1 1is
in In if for any control u;, there is some state j in I

n-1

(depending on u&) for which pij(u;) > 0. Then, I, 1is reachable

from In in one step for any control. As will appear in the proof of
~ .

Theorem 2, if (1,...,N) = 8= Iyte+++Iy, then (7) is preferable to (6)

(under the other conditions of the theorem). This condition says that

given any control sequence, some state in IO will eventually be

reached. This is clearly a necessary condition for (7) to be strictly



preferable to (6), as can be seen from the way the successive sub-

stitutions in (7) are carried out. In any case (36) holds.

Theorem 2. Suppose U 1is compact and the pij(-) and

K(i,*) are continuous. Let K(0,:) =0 and poo(-) = 1. For any

u e U, let

N

p,.(u) <1 (261)

j=1
pij(u) >0 for some 1= j(i,u) £ i - I(for i > 1)

pij(u) >0 for some j(i,u) > 1.

Then both (6) and (7) converge to the unique finite solution of (5).

Let C,(i) = Cy(1) = 0 and K(i,u) 20, i=1,...,N. Then

osc (i) sC (i) T c(a). (36)

In addition, for 1 in Io+---+In,

Em+n'(i) >c (i), m=z1 < (361)

i.e., (7) is strictly preferable to (6) for i in IO+---+I

N‘
Proof., The existence of a unique finite solution {C(i)} to
(5) is essentially proved in [2], {3]. For the moment, suppose that there

u

is a solution. inimizi
Denote the minimizing control by T = (uy,-.-, N).




Then it is easy to verify that

N
C(i) = X p;5(u;)C(3) + K(i,u,)
j=1
37
N ~
C(i) = X q;5(MC@) + K(3,m)
J=1

where the {qij (m)} and {HK(i,Tr)} are computed from the {pij (ui)}
and {K(i,ui)} as in (25). Also (37) is not decreased, for any

A
i=z1, if 7T;é T replaces 7. Thus, by the minimizing properties of

T,m_ and T
°’’'n 7Tn

C=P(mC + K(m) = P(wh)c + K(Wn)
(28)
el = P(wn)cn + K(wn) < P(TI‘)Cn + K(m)
¢ = q(m)c + X(m) = ()¢ + K(¥ )
~ o e~ ~ o~ (39)
Cop = Q,(?Tn)Cn + K(vrn) < Q(Tr)Cn + K(m).
(38) and (39) yield
C,q-Cs Pn+l(n)(co-c)
(40)
C-C,q% P(Wh).--P(Wb)(C-CO)
~ n+l ~
c -C=Q C.-C)
n+l (Tr)( 0 (brl)

~

L= A )+ q(T ) (c-B

Cn+ 0 O)



By Theorem 1, the sums of the rows in Pn(v) and Qn(v) (which

n+1l N n+l
are L p.. (m) and X a5 (T), resp.) tend to zero as n — « mono-
J=1 J=1

tonically,and faster for Q(m) than for P(m). Next it will be shown
that the row sums of P(Wh)---P(Wb) and Q(%h)---Q(%b) also tend to

zero as n — o for any Wh"ﬂb or ﬂh..ﬂb sequence. This implies,

via (40) and (41), that C_—-C and ¢ - C, resp. Note that the row
n n

the

sums are 2, piﬁ (Trn---vo) and 2 qr.llgl(?rn---% ), resp.; i.e.,

=1 j=1 0
non-absorbtion probabilities - when the process starts in state i -

and uses Wh(resp. %h) first and ﬂb(resp. %b) at time n,

First, a result for controls which depend on the past will be

obtained. Let hs denote the collection {uj(io--- where

is-l}’

uj(io---iS l) is the value of the control (lies in U) which is used

at time s if Xs = j and XO =1 Ks is a control

O""’Xs-l =313

policy at time § depending on the past. Let XOKlXE...xS denote the

control policy: KO is used at time O, xl at time 1,..., and Ks

at time s; A, is just a T type of policy. Let p;j()\.s---%.

denote P{X = JIXS =1 and A used at time k, k= s,

s+r-l)

ceeyStr-1}.

The hypothesis (26') implies that there is some o > O so that

N
io(x se s A

p s s+N-l) zQ

¥ x
Lo Zopys(hgreeng v y)

j=1

for any sequence xs.--x Furthermore, since state O 1is ab-

s+n-1"

. N .
sorbing piO(AO...AN_l) is nondecreasing in N for any fixed
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KO...hh... sequence. It will be proved that

o000 Ag) 2 1 - (@) (42)

(42) holds for n = 1. Suppose that its true for n = r. Then,

using the induction hypothesis and pgo(-) =1,

N

rN+N
(e e Mpepo1) = p ( M-1)P00

N N
+ (x _l)p.o(er...er+N_l)

J= l
> 1 - (1-a)F +aZp1§(o M) EL - (1-0)T + a(1-a)

J=1

-1 - (l-a)r+l

and (42) is proved. This implies that the row sums Z p (W .
J=1

tend to zero as n — o, Next, in order to obtain a similar relation

L To)

for Z q (W’. .%b), the 'history dependent' control analogy to (32-35)
J=1 ' ~

must be given. Using (12) and (32-3L4),

G ) = L) - Lo () 3 4, ()
1 Trr.-- 0 = q_.. coe = k;lq'ik r ,=lqk,j TTr_l...TT 3

j=1 1J r Q 0
3 N r o~ ~
- k%‘,lplk(v )leqk (7, T) + k§1(£ o, (T )qsk(ﬁr))j'g Gy (T, _q - +T)
: NS ot r+l o~ ~
= %p w (T) z qkj(ni_l ﬂ‘) + Z P, (W‘) Z q (W}...ﬂb)
=1 j=1 k=1
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~

It will be shown that for any %}...ﬂb, there is some corresponding

xo...xr, so that

X r+1 ~ N r+1
j}zllqij Grr. o) S jglpij (Ao +M)e (4k)

(47) and (45) imply that the left side of (47) goes to zero as n - o,

and hece, that Eh - C. (47) holds for r = 0 since for any T

(Theorem 1)

N
J'Elqij () = jglpij (m). (45)

For r = 1, using (43), (45) and

N N
l ad ~ ~
jglq; (7 ... 7)) s J-Elqlij (..., (46)

we obtain

N N i.1 N
F,(mm)s Lp, ()2 q. )+ Lo, ()L aq. @)
irv'l'o kei ik''1 =1 kj* 0 k=1 ikl o1 kjv 1

N ~ . X - i-1 N N

< Eipik(vl)jélpkj (Ty) + kglpik(wrl)jglpkj (1) (47)
N o,

= kglpik(”ﬁl)

where %ixl is the control sequence which uses %i at time O and
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~

Ay at time 1; where xl =T, on the set of states (kik z i},

and A = ﬁi on the set of states (kik < i}. Thus (44) holds for
r = 2, 1In general suppose (44) holds for r. Then, repeating the

steps (47), and using the induction hypothesis and (46),

N
r+l ~ ~
( e eTg) = Z plk(n' )JZ qu (TT 1Ty)
it r+l ~
+ 2 p; (ﬂ') Z (mr r...Wb)
k=1
N ~ . N . r-1
< t 1" 1
B 2.pik(7rr).Z pkj(xo' ) + 2 Plk(7r ) Z ka(x xr l)
k=1 J:l k=1 J
1 1 1" " .
for some xo...xr_l and xo...xr_l. Finally
r+l ,~ ~ r+l
F, (7rr...1ro) s Z P ; (TT . o) (48)
J=1
— t ] 3 3 _ 1 11
where xo...xr_l = KO"'Kr-l if Xl 2z i and ko"'xr-l = xo...xr 1
if X, < i, Thus (44) holds for all r.

1

We now prove the last assertion of the Theorem. Let o < C(1).

Then)since it is now supposed that K(-,i) z 0, we have

N
B, = min [ 2 p,.(wWa, + K(i,u)] s c(i). (49)
i . 1J J
u J:l
Furthermore the Bi are nondecreasing as the {aj) increase. Let
Eo(i) = Co(i) = 0 from here on. It is easily verified that C, =

[Cn(i)] is the optimum cost for an n + 1 stage control process
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and is nondecreasing (it tends to C) as n increases. It is next
verified, using (49), that Cn(i) £ C(i), for all n: Note that

Cl(i) = inf K(i,u). From the last line of (25), for any ' =
u

(ui,...,uﬁ)

~ i-1 ~
K(i,m) = jglpi'j (u'i)K(g,vr') + K(i,u'i) 2 K(i,u'i). (50)

(50), the remark below (49), and C, = C, = 0, imply that T =z C

for all n. Note that (50) is a strict inequality for i in Io

and any 7'. These remarks together with (50) imply that ﬁn(i) >
Cn(i) for i in I, andall n2 1. Next suppose that 1 e I;

i.e., for any u in U, there is some Jj in I, so that

0
pij(u) > 0. Then, since Cn(J) > Cn(J) for j e I, and Cn(g)
2 . . 2 ~ - . .
2 Cn(J) otherwise (for n z 1) we have Cn+l(1) > Cn+l(1) for i
. 2 . . . ~ .
in I, + I, and n2z 1. Repeating this procedure gives Cn+r(1) >

¢c (i) for i in I +...+I_, and all n 2 1.
n+r

0 r’
We must only prove that (5) has a unique finite solution.
By what has been said, it is clear that, under the hypotheses and

for any fixed T = (ul,...,uN) with u, e U, that

N
Ty, T, .
C' (1) = 2 p;i(u)C(3) + K(i,u,)
. i i
J=1
has a unique solution. Also, for any 7' and 7', there is a T
T, . v, !
such that C" (i) = min (C" (1), d# (i)), i = 1,...,N. (See [3],

p. 26 for a proof). Thus there is a sequence T, = (ui,...,uﬁ)
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so that
n T
C (i) » glb C'(i) = (i), i = 1,...,N.
m
Also
L . N n, "n n
lim ¢ "(i) = lim [ 2 p,.(W,)C "(J) + K(i,u,)]
n n j=1 o *

N
Lim [ T, (w)C() + K(3,u))].
n j=1

c(i)

The continuity of pij(-) and K(i,-) and compactness of U imply

that there is some T = (ul,...,uN) so that

N
C(l) = lele(ul)C(J) + K(i,ui)‘

The definition C(i) = glb dw(i) implies that C(i) satisfies (5). Q.E.D.
T
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